

University of Nottingham UK | CHINA | MALAYSIA

Glioblastoma, resistant stem cells and differentiation therapy

Glioblastoma (GBM) is the most aggressive and most common primary brain tumour in adults, with a poor median survival time of 15 months. GBMs are highly heterogeneous. Glioma stem cells (GSCs) are known to initiate and drive tumour growth. But GSCs are highly resistant to standard of care therapies (radio- and chemotherapy), compared to more differentiated cancer cells (DCCs). BMP4, a protein, has been shown to induce differentiation of GSCs, increasing radiosensitivity and decreasing proliferation rate. We develop a PDE model for this system that allows us to produce patient specific predications about tumour growth and therapy response.

Model assumptions and schematic

- GSCs are immortal, resistant to RT, and give rise to DCCs
- DCCs are sensitive to RT, undergo apoptosis, and dedifferentiate.
- BMP4 increases differentiation.

GSC (s) DCC (v) 🦲 MSCs (m) RT 👀

Mathematical model for BMP4 induced differentiation therapy in GBM

Nicholas Harbour¹, Lee Curtin², Matthew Hubbard¹, Alfredo Quinones-Hinojosa³, Kristin Swanson², Markus Owen¹. ¹University of Nottingham, Mathematical sciences, UK. ²Mathematical Neuro-Oncology Lab, Mayo Clinic AZ, USA. ³Department of Neurosurgery Mayo Clinic FL, USA

PDE model for GSC-driven growth
therapy
$\frac{\partial s}{\partial t}_{GSCs} = \underbrace{\nabla \cdot (D_s \nabla s)}_{\text{diffusion}} + \underbrace{(2P_s - 1)K(N)m_s s}_{\text{self-renewal of } s}$
$\frac{\partial v}{\partial t}_{\text{DCCs}} = \underbrace{\nabla \cdot (D_v \nabla v)}_{\text{diffusion}} + \underbrace{2(1 - P_s)K(N)m_s s}_{\text{differnetaiton of }s} + \underbrace{(2R_s)K(N)m_s s}_{\text{differnetaiton of }s} + (2$
$\frac{\partial m}{\partial t} = \underbrace{\nabla \cdot (D_m \nabla m)}_{\text{diffusion}} + \underbrace{\chi m \nabla N}_{\text{chemotaxi}}$
$\frac{\partial B}{\partial t}_{\text{BMP4}} = \underbrace{\nabla \cdot (D_B \nabla B)}_{\text{diffusion}} + \underbrace{Cm}_{\text{release}} - t$ Model simulations

 $\Gamma = 0$ (resection)

GSC driven growth

MSC, containing BMP4, delivered locally delay progression

